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We address the issue of mobility of localized modes in two-dimensional nonlinear Schrödinger lattices with
saturable nonlinearity. This describes, e.g., discrete spatial solitons in a tight-binding approximation of two-
dimensional optical waveguide arrays made from photorefractive crystals. We discuss the numerically obtained
exact stationary solutions and their stability, focusing on three different solution families with peaks at one,
two, and four neighboring sites, respectively. When varying the power, there is a repeated exchange of stability
between these three solutions, with symmetry-broken families of connecting intermediate stationary solutions
appearing at the bifurcation points. When the nonlinearity parameter is not too large, we observe good mobility
and a well-defined Peierls-Nabarro barrier measuring the minimum energy necessary for rendering a stable
stationary solution mobile.
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I. INTRODUCTION

There is a large current interest in nonlinear mechanisms
for the storage and transport of localized coherent packages
of energy in spatially periodic systems, which may be de-
scribed by discrete lattice models in one, two, or three spatial
dimensions. Such systems quite generally may support in-
trinsic localized modes, or discrete breathers, which are ex-
act, generally time-periodic, spatially localized solutions to
the underlying dynamical lattice equations and, under certain
conditions, also may show mobility. For a recent review of
the properties and applications of such intrinsic localized
modes, see �1�. In particular, within nonlinear optics such
localized modes may appear as discrete spatial solitons in
periodic structures describing arrays of coupled waveguides.
See, e.g., �2,3� for reviews of experimental observations as
well as theoretical modeling of discrete spatial solitons and
�4,5� and references therein for more recent experimental
results.

In such systems, the longitudinal variable along the
waveguides plays the role of time in the dynamical lattice
equations, while the arrays themselves may be either one-
dimensional �1D� �e.g., �6–8�� or 2D �e.g., �9�� transversally.

Traditionally �6,10�, most attention has been put on wave-
guide arrays constructed from Kerr nonlinear media, in
which case the appropriate lattice model derived from
coupled-mode theory �tight-binding-type approximation� is
the cubic discrete nonlinear Schrödinger �DNLS� equation
�see, e.g., �11� for a review of the properties and applications
of this model�. However, more recently �e.g., �4,5,7–9� and

references therein� much experimental effort has been de-
voted to generating discrete solitons in photorefractive me-
dia, where the nonlinearity is not anymore of pure Kerr type
�12�. In particular, optically induced lattices with focusing as
well as defocusing nonlinearities were created, e.g., in �7–9�,
leading to direct observation of many earlier predicted phe-
nomena such as spatial gap solitons �7� and solutions of dif-
ferent symmetries �odd and even� in 1D arrays �8�. In addi-
tion, recent works �4,5� have reported the observation of
spatial gap solitons and self-trapping also in 1D permanent
waveguide arrays with photovoltaic defocusing nonlinearity,
showing strong saturation at higher powers. In this case, the
appropriate lattice model in the tight-binding limit is a 1D
DNLS equation with saturable on-site nonlinearity �a dis-
crete version of the Vinetskii-Kukhtarev �13� equation�,
which was introduced in �14� and further studied in �15–18�.
It is important to remark that the discrete model used in �17�
to model waveguide arrays with photovoltaic defocusing
nonlinearity is mathematically equivalent �18� to the model
for focusing nonlinearity of �14,15�. A recent discussion and
experimental demonstration of this equivalence were given
in �5�.

One remarkable property of the 1D saturable DNLS equa-
tion, discovered in �15�, is the boundedness, and at certain
points even vanishing, of the so-called Peierls-Nabarro �PN�
potential barrier as a function of the soliton power. The PN
barrier for DNLS-like equations may be defined �19� as the
difference in energy �Hamiltonian� between the two funda-
mental localized modes centered at, respectively, in between
lattice sites, at the same power �norm� �the latter being a
conserved quantity for the dynamics�. Thus, it is expected to
give a lower bound to the amount of additional energy nec-
essary to render a stable stationary solution mobile. It was
also numerically confirmed �15,17,18� that the mobility of
high-power localized solutions in the saturable 1D DNLS
model was considerably enhanced compared to the cubic
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DNLS model, where the PN barrier grows rapidly as the
power increases �20�. Another peculiar property of the 1D
saturable DNLS model is the existence of a family of exact
analytical sech-shaped solutions, centered at arbitrary lattice
positions, for some particular regimes of parameter values
�16�. The power of these solutions, which are linearly mar-
ginally stable, depends continuously on the position of their
center, and it can be shown that this solution family exists in
a neighborhood of the first zero of the PN barrier, bifurcating
with the site-centered and bond-centered solution families
exactly at the points where these families exchange their sta-
bility. Thus, the analytical solutions constitute a family of
“intermediate” symmetry-broken solutions connecting site-
centered and bond-centered solutions, analogously to the
scenario for enhanced mobility described for another type of
extended 1D DNLS equation in �21�, as well as for more
general chains of coupled oscillators in �22�.

However, for 2D arrays, much less is known about dis-
crete soliton mobility. Essentially, as was described in �23�,
for cubic nonlinearity only wide discrete solitons are mobile.
However, these are unstable to a “quasicollapse” process, so
that after moving a few lattice sites the broad solitons self-
focus into narrow localized peaks, which get pinned by the
lattice �23�. It is our purpose here to show that a saturable
nonlinearity may, under certain conditions, lead to highly
mobile discrete solitons also for 2D waveguide arrays. The
study of discrete soliton mobility has been suggested to be
one of the most important issues in the implementation of
these theoretical concepts in all-optical switching schemes
for one-dimensional nonlinear arrays �24� and very recently
for two-dimensional ones in a “reduced” geometry �25�. For
this reason, the two-dimensionality can be viewed as a large
improvement in this direction, because of the promising pos-
sibility of multiple-site connections and the direct integration
with photonic crystals.

An interesting analogy may be drawn to what is known
within the field of polarons, where in the case of the standard
semiclassical Holstein model with harmonic on-site oscilla-
tor potentials the stable �small� polarons are always pinned to
the lattice in 2D, while if a realistic saturable anharmonicity
is taken into account for the oscillator potentials, moving
polarons may also exist �26�. In the former case, the static
polarons are obtained as stationary solutions to the cubic
DNLS equation, while in the latter case as solutions to the
saturable DNLS equation �although the dynamics of the po-
larons is more complex as it involves electron as well as
phonon degrees of freedom�.

The structure of this paper is as follows. In Sec. II we
describe the 2D saturable DNLS equation, its basic proper-
ties, and the region of existence for localized solutions. Next,
in Sec. III we analyze the stability of these solutions and we
introduce the concept of intermediate solutions. In Sec. IV,
we present our results for the mobility of localized solutions
in 2D arrays. Finally, Sec. V concludes the paper.

II. MODEL

We consider the following �general� form of the 2D satu-
rable DNLS equation for an isotropic medium, analogous to
the 1D model in �14,15,18�:

i
�un,m

��
+ �un,m − �

un,m

�1 + �un,m�2�
= 0, �1�

where � is the normalized propagation distance, un,m de-
scribes the electric field amplitude in the �n ,m� site, � rep-
resents the 2D discrete Laplacian, and �un,m�un+1,m
+un−1,m+un,m+1+un,m−1. The parameter � is given by the ratio
between the nonlinear parameter and the coupling constant
�14,15,18�. We choose ��0 in our computations without
loss of generality. Note that, although this implies that we are
formally restricting ourselves to a focusing nonlinearity, our
results are immediately translated to the defocusing case
through the staggering transformation un,m→ �−1�m+nun,m ,
�→−�. We use an isotropic approximation which essentially
considers the coupling between neighboring sites in the n̂
and m̂ directions as equal. In the experiment, the intrinsic
anisotropy of photorefractive materials can be reduced by
changing the lattice orientation relative to the crystal axis
�27�. The two conserved quantities for Eq. �1� are the energy
�Hamiltonian�

H = − 	
n,m=1

N,M 
�un+1,m + un,m+1�un,m
* −

�

2
ln�1 + �un,m�2� + c.c.�

�2�

and the power �norm�

P = 	
n,m=1

N,M

�un,m�2. �3�

Thus, for small P, Eq. �1� reduces to the cubic DNLS equa-
tion with focusing nonlinearity of strength �, which then
may be replaced by unity through rescalings, while for larger
P saturation effects become important and � is left as an
independent parameter. Note that slightly different forms of
the saturable DNLS equation were considered �in 1D� in
�16,17�, but these are easily shown to be equivalent to the
model of �14,15,18� through simple rescalings and gauge
transformations �18�. In �14,15,17� the authors study analyti-
cally the case of ��9, based on experimental parameters.
We decided to study, for the two-dimensional array, a similar
case for �=10. As will be further explained, we also study
the case of �=4 where we found that a good mobility can be
observed for lower level of power �P�.

To study the dynamics we introduce a definition of the
soliton center in the direction n̂ �horizontal direction� as a
function of �,

n���� � 	
n,m=1

N,M

n�un,m����2� 	
n,m=1

N,M

�un,m����2, �4�

with an equivalent definition in the vertical direction m̂ for
m����. We define “axial propagation” as the propagation in
the n̂ �kx�0,ky =0� or in the m̂ �ky �0,kx=0� directions and
“diagonal propagation” when we launch the solution with the
same angle in both directions �kx=ky �0�.

Stationary solutions to Eq. �1� are those of the form
un,m���=un,mei��, where � represents the spatial frequency in
the propagation direction. As we will mainly consider the
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fundamental localized solutions, we will assume un,m to be
real �although stationary localized solutions with nontrivial
complex un,m, such as vortex solitons, generally also exist in
2D photorefractive optical lattices �28��. Using a Newton-
Raphson method, we have found the same types of stationary
solutions as described, e.g., in Ref. �29� for the 2D cubic
model. Using the usual optical terminology �6�, we rename
these solutions: one-peak solutions, as odd-odd �OO� �Fig.
1�a��; two-peak solutions, as odd-even �OE� �Fig. 1�b��; four-
peak solutions, as even-even �EE� �Fig. 1�c��. The region of
existence �see Fig. 1� of localized solutions in this system
has a very different structure compared to the cubic DNLS
case �29,30�. This can be understood by considering the
properties of plane-wave solutions to Eq. �1� in the limits of
small and large amplitudes, respectively. For small-
amplitude plane waves, it is easy to show, by neglecting the

term �un,m�2 in the denominator of the last term in Eq. �1�,
that the linear band corresponds to �−�−4,−�+4�, the supe-
rior limit ��=0 for �=4 and �=−6 for �=10, see Fig. 1�
corresponding to constant-amplitude solutions �zero wave
vector� and being the border where small-amplitude delocal-
ized and localized solutions are connected. On the other
hand, in the high-amplitude limit, we may completely ne-
glect the last term in Eq. �1� due to the saturable nature of the
nonlinearity, and thus in this limit plane waves constitute the
band −4���4 �independent of ��, again with the superior
limit �=4 corresponding to the constant-amplitude �zero
wave vector� solution. The superior limit for localized solu-
tions is observed to be �=4 by increasing the frequency �see
Fig. 1�, and thus the region of existence for localized modes
is between the low-amplitude and high-amplitude limits for
the upper-band-edge �zero-wave-vector� plane wave.

FIG. 1. �Color online� �a� OO profile. �b� OE
profile. �c� EE profile. �d� and �e� P versus � for
�=4 and for �=10, respectively. Diamonds,
stars, and squares represent OO, OE, and EE
solutions, respectively. System size N=M =15
��d� and �e� insets: N=M =31�.
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Note that, similarly to the cubic 2D DNLS equation
�23,29–31�, the power for the localized solutions is nonzero
in the small-amplitude limit, and when the frequency in-
creases, the power first decreases until it reaches a minimum.
When the frequency of the localized solutions increases fur-
ther, the power increases indefinitely. However, the nonlin-
earity is saturable, which means that there is some threshold
value for the amplitudes beyond which localization effects
should diminish. For instance, if we take an OO solution
�Fig. 1�a��, we can see that when the central site achieves
such an amplitude threshold value, the surrounding sites be-
gin to increase their amplitudes, delocalizing the profile and
evolving to a high-amplitude plane wave. An analogous sce-
nario was discussed, in a polaron context, in Ref. �26�, and
similar properties can also be described for the 1D saturable
problem �14,15,17�.

III. STABILITY ANALYSIS OF TWO-DIMENSIONAL
LOCALIZED SOLUTIONS

Linear stability of stationary solutions may be investi-
gated in a standard way �see, e.g., Ref. �32�� by writing
un,m���= �un,m+�n,m����ei��, leading to the linearized equa-
tion for �n,m, the perturbation function �PF�. To solve this
problem numerically, we use the technique outlined in Ref.
�16� for the stability analysis of localized solutions in a simi-
lar nonlinear discrete medium. We split the PF into real and
imaginary parts, �n,m=xn,m+ iyn,m �x ,y�R�, and insert them
into the linearized equation. Taking a two-dimensional
square discrete array �N=M� to compute stationary solutions
and to perform their stability analysis, we proceed to map the

2D problem to a 1D representation. Defining Z� as the vector
Z1 , . . . ,ZN2 �Z=X+ iY�, we can write the equations for the
perturbation functions in a one-dimensional representation as

X�̇ + AY� = 0 and Y�̇ − BX� = 0

ÞX�̈ + ABX� = 0 and Y�̈ + BAY� = 0, �5�

where A and B are N2�N2 matrices, depending of the un,m
profiles. Now, the stability analysis consists in finding the
eigenvalues of the matrix AB �the matrix BA has the same
eigenvalues �16��. If all the eigenvalues are positive, the so-
lutions of the problem �PF’s� are oscillatory functions, which
implies stability. On the other hand, a negative or complex
eigenvalue means the existence of exponentially increasing
PF’s, implying instability.

For a given frequency � we compute the power P, the
Hamiltonian H, and the AB eigenvalues for the OO, OE, and
EE solutions.

We take the most negative eigenvalue of each solution,
calling it “G,” and we plot it for different powers in Figs.
2�a� and 2�b� for �=4, and in Fig. 3�a� for �=10. G=0 or
G	0 implies stability or instability, respectively �there are
no complex eigenvalues for these solutions�. An oscillatory
behavior in the stability of solutions can clearly be viewed in
these figures. Depending on the level of power, a change in
stability for different solutions may be observed. This result

is in direct concordance with the previous result shown in
Ref. �15� for the one-dimensional problem. However, the
two-dimensional problem is richer in properties since it has
three main localized solutions and because, as we will show
below, the exchange of stability produces good mobility of
very localized solutions for 2D arrays.

One way to understand the concept of exchange of stabil-
ity between two different solutions is to look for intermediate
solutions �IS’s�, as was done for 1D lattices in �21,22�. Such
solutions, having symmetry-broken profiles interpolating be-
tween the two solutions which exchange their stability, typi-
cally only exist in a limited parameter regime, connecting
through bifurcations with the two solutions of higher sym-
metry. Generally, as discussed in �21�, the IS may be either
linearly stable, in which case the two symmetric solutions
are simultaneously unstable, or the IS may be unstable, when
the two symmetric solutions are simultaneously stable. Here,
we find IS’s connecting two solutions that share stability, and
thus these IS’s are unstable.

For �=4, we found that the first “exchange region” �de-
fined as the region where two solutions are stable simulta-
neously� is between the OO and OE solutions. This region
can be observed in Fig. 2�b�, where we also present the pro-
file for the IS �Fig. 2�c��. For this value of �, we can see in
Fig. 2�a� that the exchange regions when increasing the
power are, consecutively, OO-OE, OE-EE, EE-OE, and OE-
OO. Multiple-crossing points between the three different so-
lutions can be observed by plotting the Hamiltonian versus
power, coinciding with the exchange regions defined before.
These energy crossings imply that the new stable solution

FIG. 2. �Color online� Results for �=4. �a� Smallest eigenvalue
G versus power. �b� Close-up of �a� in the region P�9.4. �c� Profile
of intermediate solution �IS�. Diamonds, stars, squares, and tri-
angles represent OO, OE, EE, and IS solutions, respectively.
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has lower energy compared to the others. This can be inter-
preted as an oscillation in the PN barrier �15�. However,
there is no formal definition of this barrier for 2D arrays, and
it generally must depend on the direction of motion. We may
define it loosely as the largest difference in energy, at con-
stant norm, between two stationary solutions of the system,
close to which a localized mode must pass when moving
adiabatically through the lattice in a certain direction. �Note
that, even in 1D, the simple definition of the PN barrier used,
e.g., in Ref. �15� as the difference between site-centered and
bond-centered solutions is generally not appropriate when
these are simultaneously stable, since the energy of the IS
may be considerably larger.� The behavior of this barrier in
arrays with saturable nonlinearity is remarkable. As seen
from Fig. 2�a�, for each of the three fundamental localized
solutions, we can pass from a region where the solution is
unstable to one where it is stable by tuning the corresponding
solution power �analogously to the 1D scenario shown in
Ref. �15��. As we show explicitly in Sec. IV, this exchange of
stability properties for different solutions implies an im-
provement in the mobility for discrete arrays, which is an
important aspect for the implementation of this concept in
all-optical switching systems. �We do not here explicitly
show the results for H versus P for �=4, since the relative
differences between the respective energies are too small to

be clearly represented graphically. See the discussion in Sec.
IV for some typical values.�

Compared to the previous case, for �=10 �implying a
higher nonlinearity or a lower coupling between sites� solu-
tions are more localized as expected. The stability diagram is
presented in Fig. 3�a�. As in the former case, multiple-
exchange regions where two solutions are stable at the same
level of power can be observed: OO-OE, OE-EE, EE-OO,
and EE-OE. It is very clear from Fig. 3�a� that the IS �Fig.
3�b�� exists in the exchange region where the OO and OE
solutions are stable �region enclosed by a circle in Fig. 3�a��.
In this case the differences in energies are bigger, and we
show in Fig. 3�c� a plot for the Hamiltonian versus power. In
this figure the way in which the IS’s connect the OE and OO
solutions can be very well observed. Before the crossing
point, the energy difference �H�HOO–HOE is lower than
zero. After the crossing point this difference has changed its
sign. This is a clear confirmation that the oscillation in the
PN potential, if defined in the “naive” way as �H, is due to
the exchange in the stability of different solutions. The OE
solution becomes stable �see Fig. 3�a��; then, it shares stabil-
ity with the OO solution, and finally it continues to be stable
while the OO solution becomes unstable. The same behavior
is described by energy considerations from Fig. 3�c�. Note,
however, that the actual energy barrier to overcome for a
localized solution moving adiabatically in an axial direction
is larger than �H in the regime of simultaneous OO and OE
stability, if the path goes via the IS whose energy is larger.
This will be illustrated in Sec. IV.

IV. MOBILITY OF TWO-DIMENSIONAL
LOCALIZED SOLUTIONS

We study the mobility of 2D discrete solitons by solving
numerically Eq. �1� for initial conditions obtained by slightly
perturbing the stationary solutions described above. To be
specific, we here choose the OO solution and study mobility
in regions where this profile is always stable. In our simula-
tions, we always consider perturbations obtained by “kick-
ing” the initial OO solutions using un,m�0�=un,m exp�i�kxn
+kym��. Note that such perturbations do not change the
power, but generally increase the energy compared to the
stationary solutions.

In Fig. 4 we show dynamical results for �=4 and �=10.
First, for �=4, we study the dynamics for small-power solu-
tions P�4. Figure 4�a� shows the average axial position �4�
for an OO profile �belonging to the branch with �P /���0 in
Fig. 1�d�� kicked in the axial direction. In this region of
power the OO mode is stable, while the OE and EE modes
are both unstable �see Fig. 2�a��. The additional energy due
to the kick corresponds to �H=0.0038, which is larger than
the energy difference between the OO and OE configura-
tions, �H=0.0032. For this reason, the solution first begins
to move, but is then trapped four sites away from the input
center in a �stable� OO configuration. Due to radiation losses,
it does not have sufficient energy to overcome the next bar-
rier, but instead begins to oscillate around its new center due
to the excitation of its stable internal mode. An interesting

FIG. 3. �Color online� Results for �=10. �a� Smallest eigenvalue
G versus power. �b� Profile of intermediate solution �IS�. �c� Energy
H versus power for the region enclosed with a circle in �a�. Dia-
monds, stars, squares, and triangles represent OO, OE, EE, and IS
solutions, respectively.
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FIG. 4. �Color online� Mobil-
ity results. �=4, P=3.99: �a� axial
propagation for kx or ky =0.0323,
�b� OO profile, and �c� diagonal
propagation for kx=ky =0.031. �
=4, P=9.42: �d� axial propagation
for kx or ky =0.00624 and �e� OO
profile. �=10: �f� axial propaga-
tion for kx or ky =0.6 �P=20.43�,
�g� axial propagation for kx or
ky =0.5 �P=24.76�, and �h� OO
profile. System size N=M =15,
periodic boundary conditions.
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detail in this result is the structure of the curve. When the
OO mode propagates, it changes its form between the OO
and OE profiles. It is clear from the figure that the maximum
propagation velocity corresponds to the OO configuration
�bigger slope, potential well�, and the minimum velocity
�slope�0, saddle point� corresponds to the OE configuration
�centered between two sites in the propagation direction�.
Similar results for 1D systems have been described, e.g., in
Refs. �22,33�.

For the same parameter values, we illustrate in Fig. 4�c�
the propagation of an OO profile kicked in the diagonal di-
rection. This plot describes the identical evolution in both
axes. It can be observed that the OO profile propagates in
the diagonal direction, changing its form from an OO con-
figuration to an EE one �see the inset�. The final switching
here was two sites in both directions, from the input position
�8, 8� to �10, 10�. Here, the maximum propagation velocities
correspond to the OO configurations, and the almost zero
velocities correspond to the EE configurations. As before, the
soliton will not be able to continue its propagation because
of the radiation losses. In this case, the diagonal kick corre-
sponds to �H=0.007, while the energy difference between
OO and EE configurations at this power is �H=0.006.

The dynamics shown in Figs. 4�a� and 4�c� corresponds
essentially to that of a typical 1D cubic DNLS case in the
regime of low power, where the PN barrier is relatively small
and the site-centered solution possesses a symmetry-
breaking internal translational mode �see, e.g., �34��, which
may be excited by kicking the solution. Now, if we compare
with the 2D cubic DNLS case, the dynamics and regions of
existence of the stationary localized solutions are very differ-
ent. First, in a P versus � diagram for the 2D cubic DNLS
case �29�, there are different power thresholds for OO, OE,
and EE solutions, far away, separated in power. This implies
that below a certain level of power, it is not possible to move
the OO profile since no OE or EE solution exists at the same
power. If we consider a higher level of the power �on the
high-frequency branch with a stable OO solution�, where two
or three solutions exist, the profiles are too localized and do
not possess any localized symmetry-breaking internal modes.
This implies also that the PN potential is large and mobility
is not possible by kicking the solutions since there are no
internal translational “depinning” modes to excite. Thus, for
cubic 2D DNLS, mobility is possible only on the “continu-
umlike” low-frequency branch with �P /��	0, where OO,
OE, and EE solutions are all unstable, but such moving so-
lutions will typically “quasicollapse” into localized pinned
solutions as described in �23�.

In the 2D saturable case, these thresholds still exist but
are much closer in power. For �=4, the power thresholds for
different solutions are: POO� POE� PEE�3.07 �cf. Fig.
1�d��. This means that all solutions have essentially the same
power threshold value and that we are in principle able to
observe good mobility in the low-power regime of the
branch with �P /���0 for P
3.08. For �=10, the differ-
ences in power are higher than in the previous case, but they
are still rather small. The corresponding threshold values are
�see Fig. 1�e�� POO=0.90, POE=1.13, and PEE=1.17. This
behavior is another remarkable property of the saturable non-
linearity. As is well known �see, e.g., �31��, in two-

dimensional discrete nonlinear systems with an effectively
cubic �or stronger� nonlinearity, a power threshold value al-
ways exists for localized solutions. Our results suggest that,
increasing the value of �, it is possible to decrease this power
threshold value towards zero �for �=100 this value is POO
=0.059�. In the small-amplitude regime, the dynamics is es-
sentially governed by the cubic term in the Taylor expansion
of the saturable nonlinearity, and thus Eq. �1� is well approxi-
mated by the cubic DNLS model with effective nonlinearity
parameter �P. Thus, the threshold power should scale as �−1

for large �. A similar result was also discussed in Ref. �26�
�see, e.g., Fig. 6 in this paper�.

Now, we go further to study the exchange regions where
we observe “multistability” of solutions. In the region of
power shown in Fig. 2�b�, we study the first exchange region
between the OO and the OE solutions. In Fig. 4�d� we show
the effect of kicking the OO solution in the axial direction.
The energy added to the profile due to the kick is �H
=0.0003, and the energy difference between the OO and the
OE configurations is �H=−0.0001; i.e., the OE solution has
the lowest energy. However, in this case there exists also an
intermediate solution �Fig. 2�c��, which is important to ex-
plain the mobility we observe in this dynamics. The energy
difference between the OO and IS solutions is �H=0.0002.
In fact, the solution can move across the array as far as the
radiation losses permit it. The regions in which the profile
changes its velocity can clearly be observed in this figure.
First, for the OO and OE solutions the velocity has maxima,
which correspond with the stability analysis where both so-
lutions are stable. Both solutions correspond to a potential
well in a dynamical representation. We can also note that the
velocity is larger at half-integer values than at integer values,
consistent with the fact that the OE solution has a lower
energy than OO. The minimum velocities �slope�0� clearly
correspond to the IS’s between the OO and OE profiles �35�.
For this case IS’s have shown to increase mobility, essen-
tially because all solutions are very close in energy and just a
little kick, corresponding to approximately the energy differ-
ence between the OO and IS, is required to move them. An
analogous scenario would be seen by using the kicked stable
OE solution as initial condition.

Finally, we study the case for �=10. We first look for
mobility in the same region of power as in the previous case
�P�4 and P�9�. For these powers we were not able to find
mobility of localized solutions, essentially because the sta-
tionary solutions are distant in energy values.

Then, we study the first crossing point between the energy
of the OO and OE solutions �Fig. 3�c��. From the previous
discussion, it is clear that in the exchange regions, the mo-
bility of solutions depends on the IS. So, if we want to
switch the profile in the lattice, we first have to overcome the
energy barrier between the OO and IS. We study two cases
where we found some mobility. First, we take an OO profile
for a power lower than the crossing point power
�P�21.5�—i.e., POO=20.43. For this power both solutions
are stable, but the OO solution has lower energy than the OE
solution. Therefore, we expect it to be most probable to have
an OO stable configuration at the end of the process by
switching the profile. However, if radiation losses are large,
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the solution might in principle also be trapped in a meta-
stable OE configuration, since it might not have enough en-
ergy to overcome the barrier between OE and OO created by
IS. In Fig. 4�f�, we show an example of switching of an OO
mode with one site along the axial direction. The energy due
to the kick was �H=2.147, the energy difference between
the OO and OE configurations was �H=0.370, and the en-
ergy difference between the OO and IS was �H=0.672. The
figure shows how the OO solution starts to move very fast
�large slope�, but it is not able to continue its movement in
the array because of the high radiation losses of the switch-
ing process. This is a remarkable example of discrete switch-
ing in nonlinear lattices.

Now, we consider the situation where the OO power
�POO=24.76� is higher than the crossing point power. Here,
both OO and OE solutions are stable, but the OE solution has
lower energy, so from energetic arguments we would expect
the most likely final profile to be an OE mode �however,
depending on the amount of radiation losses, either an OE or
an OO profile may be observed as final state as discussed
above�. The dynamics resulting from a kick of the OO mode
producing a �H=2.045 is illustrated in Fig. 4�g�. The corre-
sponding energy difference between the OO and OE modes
is �H=−1.120 and between the OO mode and IS, �H
=0.118. It is clear from these numbers that we need to supply
the OO mode with some extra energy to move it across the
array even though the energy for the OE solution is lower.
This property is due to the oscillating behavior of the Hamil-
tonian. Without such crossing points, 2D mobility for high-
power solutions can generally not be expected because of the
large PN barrier. Figure 4�g� shows the switching of an OO
solution with two sites in the axial direction from the input
position. First, the OO solution has sufficient energy �big
slope� to overcome the IS energy barrier. Then, its velocity
increases as it passes the OE position, and then again it slows
down when approaching the next IS �with central position
close to site 9�. Now, it does not have enough energy to
overcome this barrier, and instead it makes one full oscilla-
tion around the OE position, limited by the two unstable IS’s.
However, during this oscillation it has recovered some of its
energy and can now pass the IS barrier to the position of the
next site, where it gets temporarily trapped into an OO con-
figuration. The radiation losses are still not too high, and the
OO mode being energetically unstable decays after a short
distance � into a state of large-amplitude oscillations around
the energetically stable configuration, the OE mode centered
in �9.5, 8� �see the inset in Fig. 4�g��. Now the solution has
enough energy to oscillate between two sites �9 and 10�. This
oscillation produces more radiation losses, and the final pro-
file is an OO mode centered in the site number 10, trapped
by the barrier created by its nearby IS. Figures 4�b�, 4�e�, and
4�h� show different profiles in the different regions of mobil-
ity. It is clear from these figures that the mobility is enhanced
for less localized solutions as expected from the PN potential
concept, but it is not forbidden for highly localized solutions
as we have shown.

We have checked these dynamical cases also for a bigger
array, where N=M =21. The quantitative results shown in
Fig. 4 change somewhat due to the extension of the system,
but the qualitative picture for the soliton’s mobility is pre-

served. We set in our computations periodic boundary con-
ditions, which implies that some radiation comes back per-
turbing the final state of the profile. Therefore, the results are
dependent on the boundaries. However, the important issue
we want to emphasize here is the mobility of highly 2D
localized states, which is independent of the array size for
saturable nonlinear media.

V. CONCLUSIONS

In conclusion, we have analyzed in some detail the
mechanisms leading to mobility of localized modes in a two-
dimensional DNLS-type lattice with saturable nonlinearity.
From a practical point of view, the most important result
from our study is the drastic enhancement of the mobility
resulting from the saturable nature of the nonlinearity, both
for low-power and high-power excitations. This effect, which
should be observable for two-dimensional waveguide arrays,
is in our opinion more remarkable than the similar effect
previously reported in 1D �15�, since stable, localized exci-
tations for pure Kerr nonlinear media are known to be essen-
tially immobile in 2D. Thus, the saturability of the nonlin-
earity introduces new possibilities for power-controlled
steering and switching also for 2D arrays. As we have
shown, mobility is not restricted to axial directions, but also
steering in diagonal directions is possible.

In principle, the choice of a smaller value of �—for in-
stance, �=3—could also be good for 2D mobility, because it
is expected that the first stability exchange region occurs for
a lower level of power. However, it is important to notice
that a decrease in the value of � �see Fig. 1� also implies an
increasing value for the power threshold of the solutions, due
to a balance between the nonlinearity and the coupling terms.
We confirmed this behavior for �=3, where the power
threshold was found to be P�4.84, while the first stability
exchange region was found to occur at P�6.98. On the con-
trary, if we increase further the value of �—for instance, �
=20—we expect that the powers for the first exchange region
will be much higher and, in this sense, it is not really inter-
esting from the optical application point of view, which al-
ways requires low level of power.

From a more fundamental point of view, our results also
give a deeper understanding for the mechanisms for mobility
of localized modes. In particular, this concerns the relation
between regimes of exchange of stability between site-
centered and bond-centered stationary solutions and points of
the vanishing of a so-called Peierls-Nabarro barrier defined
naively as the difference between such solutions at constant
norm. As we have shown, this definition is not appropriate in
regimes where both these solutions are simultaneously
stable, due to the existence of unstable intermediate solutions
of higher energy. However, redefining the PN barrier as the
energy difference to the relevant IS’s gave good agreement
with the numerically observed additional energy necessary
for making a stationary solution mobile. An analogous sce-
nario should exist in 1D and give an intuitive explanation to
why, in spite of the repeated vanishing of the “PN potential”
reported in Ref. �15� at several critical powers, the mobility
is good only around the first of these �36�. At the other
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�larger� critical powers, the barriers created by the IS’s are
expected to be very large, and no smooth path in phase space
passing simultaneously close to all three stationary solutions
is likely to exist.

It is also interesting to mention that although, in 1D, both
the existence of a particular class of IS’s �which were even
obtained analytically� �16� and the “PN barrier vanishing”
�15� were previously known for the saturable potentials,
the connection between these results and their relation to
exchange of stability seem so far to have gone unnoticed.
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